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Abstract—Convergent syntheses of combretastatins A-1 and B-1 were accomplished via coupling of biocatalytically generated
p-bromomethoxycatechol with trimethoxyphenylacetylene. © 2002 Elsevier Science Ltd. All rights reserved.

Oxygenated natural products containing a catechol sub-
unit are ubiquitous in nature. Combretastatins A-1, B-1
and A-4 belong to this class of natural products and
were isolated from the bark of an African willow,
Combretum caffrum, in 1987.1 Biological studies of
these compounds have revealed that they are among the
most cytotoxic agents tested so far against a series of
cancer cell lines.2 They share a common binding site on
tubulin with the well-known antimitotic agents col-
chicine, podophyllotoxin, and steganancin; they are
capable of inhibiting microtubule assembly at nanomo-
lar concentrations. The high potency of combretastatins
A-1 and A-4, Fig. 1, as angiogenesis inhibitors offers a
new approach to cancer treatment. These natural prod-
ucts upon binding to tubulin, prevent tumors from

metastasizing by inhibiting their ability to grow new
blood vessels.3 Structure–activity relationship analyses
of combretastatins and their analogues have shown that
the cis-olefin and the phenolic functional groups are
essential for antitumor activity.4 Such structural fea-
tures can be fashioned quite easily through the use of E.
coli JM109 (pDTG602)5 in an environmentally friendly
method of generating functionalized catechols for
application to the synthesis of this class of natural
products.

After Gibson elucidated the degradation pathway,
shown in Fig. 2, for aromatic compounds by Pseu-
domonas species,6 he developed two sets of recombinant
organisms for use in synthesis: one that expresses tolu-
ene dioxygenase (TDO) and one with plasmids for both
TDO and the next enzyme in the sequence, dihydrodi-
oldehydrogenase (DHDD). Application of the latter
enzyme to either an arene or the diol derived from it
yields the corresponding catechol as shown in Fig. 3.

We have already reported on the synthesis using recom-
binant organism JM109 (pDTG602) of several func-
tionalized catechols7 that are otherwise difficult to
prepare by traditional means. In our approach to com-
bretastatins we chose to prepare p-methoxybromocate-
chol (9)8 and couple its protected form to
3,4,5-trimethoxyphenylethyne2a as shown in Scheme 1.
The biooxidation of 4-bromoanisole provided �1.5g/L
of 9, which was converted to the MOM-protected
derivative 10 in �90% yield. The coupling of aryl
halide 10 with alkynylboronic ester of 11 under Suzuki–
Miyaura conditions9 provided acetylene 13, which was
hydrogenated completely to 14 and hydrolyzed to com-
bretastatin B-1. Hydroboration of 13 to 15 was found

Figure 1. Structure variation in combretastatins.
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Figure 2. Degradation of aromatics by eukaryotic strains.

In summary, two related combretastatins were synthe-
sized in a convergent manner and in yields competitive
or superior to those of previous literature syntheses.1,10

Current endeavors center around the efficient design of
para-substituted analogs of A-1 as well as preparation
of combretastatin A-4. Results of these endeavors will
be reported in due course.
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